banner
You are not using a standards compliant browser. Because of this you may notice minor glitches in the rendering of this page. Please upgrade to a compliant browser for optimal viewing:
Firefox
Internet Explorer 7
Safari (Mac and PC)
Press Release
Music in our ears: The science of timbre
Saturday, November 3, 2012


Soundwave image Courtesy of Shutterstock

New research, published in PLOS Computational Biology, offers insight into the neural underpinnings of musical timbre. Mounya Elhilali, of Johns Hopkins University and colleagues have used mathematical models based on experiments in both animals and humans to accurately predict sound source recognition and perceptual timbre judgments by human listeners.

A major contributor to our ability to analyze music and recognize instruments is the concept known as 'timbre'. Timbre is a hard-to-quantify concept loosely defined as everything in music that isn't duration, loudness or pitch. For instance, timbre comes into play when we are able to instantly decide whether a sound is coming from a violin or a piano.

The researchers at The John Hopkins University set out to develop a mathematical model that would simulate how the brain works when it receives auditory signals, how it looks for specific features and whether something is there that allows the brain to discern these different qualities.

The authors devised a computer model to accurately mimic how specific brain regions transform sounds into the nerve impulses that allow us to recognize the type of sounds we are listening to. The model was able to correctly identify which instrument was playing (out of a total of 13 instruments) to an accuracy rate of 98.7 percent.

The model mirrored how human listeners make judgment calls regarding timbre. The researchers asked 20 people to listen to two sounds played by different musical instruments. The listeners were then asked to rate how similar the sounds seemed. A violin and a cello are perceived as closer to each other than a violin and a flute. The researchers also found that wind and percussive instruments tend to overall be the most different from each other, followed by strings and percussions, then strings and winds. These subtle judgments of timbre quality were also reproduced by the computer model.

"There is much to be learned from how the human brain processes complex information such as musical timbre and translating this knowledge into improved computer systems and hearing technologies", Elhilali said.

###

Patil K, Pressnitzer D, Shamma S, Elhilali M (2012) Music in Our Ears: The Biological Bases of Musical Timbre Perception. PLoS Comput Biol 8(11):e1002759. doi:10.1371/journal.pcbi.1002759

Public Library of Science: http://www.plos.org



Thanks to Public Library of Science for this article.

This press release was posted to serve as a topic for discussion. Please comment below. We try our best to only post press releases that are associated with peer reviewed scientific literature. Critical discussions of the research are appreciated. If you need help finding a link to the original article, please contact us on twitter or via e-mail.



This press release has been viewed 462 time(s).

Comments
No comments recorded.
Add Comment?
Comments are closed 2 weeks after initial post.
Friends