A discovery that promises transistors – the fundamental part of all modern electronics – controlled by laser pulses that will be 10,000 faster than today's fastest transistors has been made by a Georgia State University professor and international researchers.
Professor of Physics Mark Stockman worked with Professor Vadym Apalkov of Georgia State and a group led by Ferenc Krausz at the prestigious Max Planck Institute for Quantum Optics and other well-known German institutions.
There are three basic types of solids: metals, semiconductors, used in today's transistors, and insulators – also called dielectrics.
Dielectrics do not conduct electricity and get damaged or break down if too high of fields of energy are applied to them. The scientists discovered that when dielectrics were given very short and intense laser pulses, they start conducting electricity while remaining undamaged.
The fastest time a dielectric can process signals is on the order of 1 femtosecond – the same time as the light wave oscillates and millions of times faster than the second handle of a watch jumps.
Dielectric devices hold promise to allow for much faster computing than possible today with semiconductors. Such a device can work at 1 petahertz, while the processor of today's computer runs slightly faster than at 3 gigahertz.
"Now we can fundamentally have a device that works 10 thousand times faster than a transistor that can run at 100 gigahertz," Stockman said. "This is a field effect, the same type that controls a transistor. The material becomes conductive as a very high electrical field of light is applied to it, but dielectrics are 10,000 times faster than semiconductors."
The results were published online Dec. 5 in Nature. The research institutions include the Max Planck Institute for Quantum Optics, the Department of Physics at the Munich Technical University, the Physics Department at Ludwig Maximilian University at Munich and the Fritz Haber Institute at Berlin, Germany.
At one time, scientists thought dielectrics could not be used in signal processing – breaking down when required high electric fields were applied. Instead, Stockman said, it is possible for them to work if such extreme fields are applied at a very short time.
In a second paper also published online Dec. 5 in Nature, Stockman and his fellow researchers experimented with probing optical processes in a dielectric – silica – with very short extreme ultraviolet pulses. They discovered the fastest process that can fundamentally exist in condensed matter physics, unfolding at about at 100 attoseconds – millions of times faster than the blink of an eye.
The scientists were able to show that very short, highly intense light pulses can cause on-off electric currents – necessary in computing to make the 1s and 0s needed in the binary language of computers -- in dielectrics, making extremely swift processing possible.
###
Georgia State University: http://www.gsu.edu
This press release was posted to serve as a topic for discussion. Please comment below. We try our best to only post press releases that are associated with peer reviewed scientific literature. Critical discussions of the research are appreciated. If you need help finding a link to the original article, please contact us on twitter or via e-mail.
![]() |
![]() |
![]() |
![]() |
Institute for Highway Safety is known for crash-test safety ratings, but as cars get smarter there's a need to look beyond crashworthiness
Researchers have long struggled to resolve what happens to information when it falls inside a black hole, but the famous physicist says he has a solution
Researchers have been using muons to take a peek inside the nuclear reactors in Japan that melted down in 2011. The results could aid the continuing cleanup operations.
Neutrinos, created by violent phenomena such as black holes and exploding stars, could hold the key to the universe’s most distant and mysterious events
Better MRI scanners could result from a trick in which a magnetic field springs up from nowhere, using materials famous for their link to invisibility cloaks
Water locked away in rocks for 1.5 billion years reveals conditions were right for complex organic molecules to form in deep sea hydrothermal vents
Helium, used in nuclear, medical and, yes, party industries, has become scarce, but new research has revealed a possible way to pinpoint fresh sources
New lab results show how collisions between comets and planets can make the molecules that are the essential building blocks of life.
A startup company says it is expanding the language of DNA to create new tools for drug discovery.
If scientists can convince people to use the app, they hope it will help them solve a cosmic mystery. This story originally aired on March 27, 2015 on All Things Considered.
![]() |
![]() |