Autistic-like behaviors can be partially remedied by normalizing excessive levels of protein synthesis in the brain, a team of researchers has found in a study of laboratory mice. The findings, which appear in the latest issue of Nature, provide a pathway to the creation of pharmaceuticals aimed at treating autism spectrum disorders (ASD) that are associated with diminished social interaction skills, impaired communication ability, and repetitive behaviors.
"The creation of a drug to address ASD will be difficult, but these findings offer a potential route to get there," said Eric Klann, a professor at NYU's Center for Neural Science and the study's senior author. "We have not only confirmed a common link for several such disorders, but also have raised the exciting possibility that the behavioral afflictions of those individuals with ASD can be addressed."
The study's other co-authors included researchers from the University of California, San Francisco (UCSF) and three French institutions: Aix-Marseille Universite'; Institut National de la Santé et de la Recherche Médicale (INSERM); and Le Centre National de la Recherche Scientifique (CNRS).
The researchers focused on the EIF4E gene, whose mutation is associated with autism. The mutation causing autism was proposed to increase levels of the eIF4E, the protein product of EIF4E, and lead to exaggerated protein synthesis. Excessive eIF4E signaling and exaggerated protein synthesis also may play a role in a range of neurological disorders, including fragile X syndrome (FXS).
In their experiments, the researchers examined mice with increased levels of eIF4E. They found that these mice had exaggerated levels of protein synthesis in the brain and exhibited behaviors similar to those found in autistic individuals—repetitive behaviors, such as repeatedly burying marbles, diminished social interaction (the study monitored interactions with other mice), and behavioral inflexibility (the afflicted mice were unable to navigate mazes that had been slightly altered from ones they had previously solved). The researchers also found altered communication between neurons in brain regions linked to the abnormal behaviors.
To remedy to these autistic-like behaviors, the researchers then tested a drug, 4EGI-1, which diminishes protein synthesis induced by the increased levels of eIF4E. Through this drug, they hypothesized that they could return the afflicted mice's protein production to normal levels, and, with it, reverse autistic-like behaviors.
The subsequent experiments confirmed their hypotheses. The mice were less likely to engage in repetitive behaviors, more likely to interact with other mice, and were successful in navigating mazes that differed from those they previously solved, thereby showing enhanced behavioral flexibility. Additional investigation revealed that these changes were likely due to a reduction in protein production—the levels of newly synthesized proteins in the brains of these mice were similar to those of normal mice.
"These findings highlight an invaluable mouse model for autism in which many drugs that target eIF4E can be tested," added co-author Davide Ruggero, an associate professor at UCSF's School of Medicine and Department of Urology. "These include novel compounds that we are developing to target eIF4E hyperactivation in cancer that may also be potentially therapeutic for autistic patients."
###
New York University: http://www.nyu.edu
This press release was posted to serve as a topic for discussion. Please comment below. We try our best to only post press releases that are associated with peer reviewed scientific literature. Critical discussions of the research are appreciated. If you need help finding a link to the original article, please contact us on twitter or via e-mail.
![]() |
![]() |
![]() |
![]() |
Free-living songbirds show increased stress hormone levels when nesting under white street lights. But different light spectra may have different physiological effects as this study finds, suggesting that using street lights with specific colour spectra may mitigate effects of light pollution on wildlife
Scientists identify the condition aphantasia, in which people cannot create images in their head
The dust in our homes contains an average of 9,000 different types of fungi and bacteria, a study suggests.
A mosquito can bear up to 23 times its total body weight on each leg, which is crucial for landing on water – the insect's secret is way it stands
Tropical species with smaller geographical ranges are more likely to die out in a warming climate than those that can adapt by ‘invading’ new regions
Most people think of bacteria as germs, signs of filth, or unwanted bringers of disease. Slowly, that view …
The gloomy octopuses crowded at Jervis Bay, Australia, appear to spit and throw debris such as shell at each other in what could be an intentional use of weapons
Therapies based on hormones that make us more trusting enhance our natural placebo effect – a finding that could alter the way clinical trials are conducted
The blind, hairless babies born recently at Washington D.C.'s National Zoo are completely dependent on their mothers—who can sometimes accidentally crush them.
The poop-hoarding insects have an amazingly advanced internal GPS that allows them to navigate by day or night.
![]() |
![]() |