What came first: the bipedal human ancestor or the grassland encroaching on the forest?
A new analysis of the past 12 million years' of vegetation change in the cradle of humanity is challenging long-held beliefs about the world in which our ancestors took shape – and, by extension, the impact it had on them.
The research combines sediment core studies of the waxy molecules from plant leaves with pollen analysis, yielding data of unprecedented scope and detail on what types of vegetation dominated the landscape surrounding the African Rift Valley (including present-day Kenya, Somalia and Ethiopia), where early hominin fossils trace the history of human evolution.
"It is the combination of evidence both molecular and pollen evidence that allows us to say just how long we've seen Serengeti-type open grasslands," said Sarah J. Feakins, assistant professor of Earth sciences at the USC Dornsife College of Letters, Arts and Sciences and lead author of the study, which was published online in Geology on Jan. 17.
Feakins worked with USC graduate student Hannah M. Liddy, USC undergraduate student Alexa Sieracki, Naomi E. Levin of Johns Hopkins University, Timothy I. Eglinton of the Eidgenössische Technische Hochschule and Raymonde Bonnefille of the Université d'Aix-Marseille.
The role that the environment played in the evolution of hominins—the tribe of human and ape ancestors whose family tree split from the ancestors of chimpanzees and bonobos about 6 million years ago—has been the subject of a century-long debate.
Among other things, one theory dating back to 1925 posits that early human ancestors developed bipedalism as a response to savannas encroaching on shrinking forests in northeast Africa. With fewer trees to swing from, human ancestors began walking to get around.
While the shift to bipedalism appears to have occurred somewhere between 6 and 4 million years ago, Feakins' study finds that thick rainforests had already disappeared by that point—replaced by grasslands and seasonally dry forests some time before 12 million years ago.
In addition, the tropical C4-type grasses and shrubs of the modern African savannah began to dominate the landscape earlier than thought, replacing C3-type grasses that were better suited to a wetter environment. (The classification of C4 versus C3 refers to the manner of photosynthesis each type of plant utilizes.)
While earlier studies on vegetation change through this period relied on the analysis of individual sites throughout the Rift Valley—offering narrow snapshots—Feakins took a look at the whole picture by using a sediment core taken in the Gulf of Aden, where winds funnel and deposit sediment from the entire region. She then cross-referenced her findings with Levin who compiled data from ancient soil samples collected throughout eastern Africa.
"The combination of marine and terrestrial data enable us to link the environmental record at specific fossil sites to regional ecological and climate change," Levin said.
In addition to informing scientists about the environment that our ancestors took shape in, Feakins' study provides insights into the landscape that herbivores (horses, hippos and antelopes) grazed, as well as how plants across the landscape reacted to periods of global and regional environmental change.
"The types of grasses appear to be sensitive to global carbon dioxide levels," said Liddy, who is currently working to refine the data pertaining to the Pliocene, to provide an even clearer picture of a period that experienced similar atmospheric carbon dioxide levels to present day. "There might be lessons in here for the future viability of our C4-grain crops," says Feakins.
###
University of Southern California: http://www.usc.edu
This press release was posted to serve as a topic for discussion. Please comment below. We try our best to only post press releases that are associated with peer reviewed scientific literature. Critical discussions of the research are appreciated. If you need help finding a link to the original article, please contact us on twitter or via e-mail.
![]() |
![]() |
![]() |
![]() |
Institute for Highway Safety is known for crash-test safety ratings, but as cars get smarter there's a need to look beyond crashworthiness
Researchers have long struggled to resolve what happens to information when it falls inside a black hole, but the famous physicist says he has a solution
Researchers have been using muons to take a peek inside the nuclear reactors in Japan that melted down in 2011. The results could aid the continuing cleanup operations.
Neutrinos, created by violent phenomena such as black holes and exploding stars, could hold the key to the universe’s most distant and mysterious events
Better MRI scanners could result from a trick in which a magnetic field springs up from nowhere, using materials famous for their link to invisibility cloaks
Water locked away in rocks for 1.5 billion years reveals conditions were right for complex organic molecules to form in deep sea hydrothermal vents
Helium, used in nuclear, medical and, yes, party industries, has become scarce, but new research has revealed a possible way to pinpoint fresh sources
New lab results show how collisions between comets and planets can make the molecules that are the essential building blocks of life.
A startup company says it is expanding the language of DNA to create new tools for drug discovery.
If scientists can convince people to use the app, they hope it will help them solve a cosmic mystery. This story originally aired on March 27, 2015 on All Things Considered.
![]() |
![]() |