banner
You are not using a standards compliant browser. Because of this you may notice minor glitches in the rendering of this page. Please upgrade to a compliant browser for optimal viewing:
Firefox
Internet Explorer 7
Safari (Mac and PC)
Post Archive
2019 (0)2011 (6)2010 (14)
Rate This Post
Total votes: 1
Blogger Profile

Kelly Oakes GBR

I'm an Undergraduate Physics student from Imperial College London, about to start the Masters year of my degree. I mostly write about physics research papers that I find interesting in the hope that other people will find them interesting too. The wordpress version of my blog is here.

My posts are presented as opinion and commentary and do not represent the views of LabSpaces Productions, LLC, my employer, or my educational institution.

Blog RSS Feed
RSS Add to My Yahoo Add to Google
Recent Comments

Before arriving in London, each student receives a short description of the room with the possibility to share a room with a number of other independent students. Twin rooms in flat shares are idea. . .Read More
May 25, 2013, 10:42am

The one thing you forgot to mention, the most important thing as far as I'm concerned, is the possibility that dark matter does not exist at all. It could be nothing but a by-product of our means o. . .Read More
Aug 11, 2012, 11:38am
Comment by kinetic energy in Physics is hard!

agreed, the amount of hours people put into their theories is crazy, but all worth it in the end. . . .Read More
Jun 04, 2012, 12:09pm

From Poincare and caos, for modest changes in the initial conditions, the motion of the system becomes chaotic and completely unpredictable. This is impotrtant for viewing two galaxies mix. Three b. . .Read More
Aug 01, 2011, 4:08pm

Poincare find that trhee body don not have mathematical representation. The mix of two galaxies must be a big caso .Or not? . . .Read More
Jul 29, 2011, 11:14pm
Monday, December 6, 2010

I've been really busy recently, so this post is a little shorter than usual, but hopefully just as sweet.

*

From far away Saturn’s rings look pretty solid – I’m sure I’m not the only person who, as a child, imagined it’d be possible to skate around the planet on them. In reality, though, they’re made up of millions and millions of bits of ice and dust, ranging in size from micrometres to metres. Until recently, scientists thought that the occasionally odd behaviour of the most massive ring, known as the B ring, was solely due to the pull of one of Saturn’s moons, Mimas. However, new research published in the December issue of the Astronomical Journal explains that Mimas is not the only reason for the variations that we see in this ring…

 

Saturn as seen by the Cassini Orbiter. Image: NASA

Joseph Spitale and Carolyn Porco from the Space Science Institute at Boulder, Colorado looked at four years worth of images of Saturn’s rings from the Cassini mission. They saw evidence of wave patterns in the B ring that seemed to have arisen spontaneously – without being forced by Mimas. The waves are thought to come about because of the high density of the B ring, and are given a boost by its sharp edge which reflects and amplifies the waves. Spitale and Porco also found small moons, known as “moonlets”, near the outer edge of the B ring.

 

Cassini image of Saturn's B ring, taken in 2009. Image: NASA

The small chunks of ice and dust that make up Saturn’s rings may be left over from the formation of the planet itself, or could be all that is left of a moon that strayed too close to its parent and got broken up by Saturn’s gravity.* Either way, these new findings show that the rings are anything but the static bands of ice we sometimes imagine them to be, and that their motion doesn’t even always come from outside influences.

But these findings don’t just tell us about the behaviour of Saturn’s rings. They also offer insight into other systems in the universe that may have similar oscillations, such as spiral galaxies and protoplanetary disks. This is an example of one of the amazing things about physics. By observing something close to us, we can learn about the behaviour of systems on the other side of the universe.

*There’s something known as the Roche limit that dictates how close a moon can get to its planet before it’s broken up by tidal forces caused by the planet itself.

References:
Joseph N. Spitale, & Carolyn C. Porco (2010). Free Unstable Modes and Massive Bodies in Saturn’s Outer B Ring Astron.J.140:1747-1757 arXiv: 0912.3489v2

This post has been viewed: 2659 time(s)

Blog Comments

Evie
Rate Post:

Like 0 Dislike

Very cool post Kel! Im a fan.. I just love this stuff :)

It's great that people are really starting to more and more sift through the massive amounts of data that has been collected over the years. Would be a shame to miss something in the data we already have that could have huge implications.

Add Comment?
Comments are closed 2 weeks after initial post.
Friends