banner
You are not using a standards compliant browser. Because of this you may notice minor glitches in the rendering of this page. Please upgrade to a compliant browser for optimal viewing:
Firefox
Internet Explorer 7
Safari (Mac and PC)
Post Archive
2018 (0)2011 (6)2010 (14)
Rate This Post
Total votes: 4
Blogger Profile

Kelly Oakes GBR

I'm an Undergraduate Physics student from Imperial College London, about to start the Masters year of my degree. I mostly write about physics research papers that I find interesting in the hope that other people will find them interesting too. The wordpress version of my blog is here.

My posts are presented as opinion and commentary and do not represent the views of LabSpaces Productions, LLC, my employer, or my educational institution.

Blog RSS Feed
RSS Add to My Yahoo Add to Google
Recent Comments

Before arriving in London, each student receives a short description of the room with the possibility to share a room with a number of other independent students. Twin rooms in flat shares are idea. . .Read More
May 25, 2013, 10:42am

The one thing you forgot to mention, the most important thing as far as I'm concerned, is the possibility that dark matter does not exist at all. It could be nothing but a by-product of our means o. . .Read More
Aug 11, 2012, 11:38am
Comment by kinetic energy in Physics is hard!

agreed, the amount of hours people put into their theories is crazy, but all worth it in the end. . . .Read More
Jun 04, 2012, 12:09pm

From Poincare and caos, for modest changes in the initial conditions, the motion of the system becomes chaotic and completely unpredictable. This is impotrtant for viewing two galaxies mix. Three b. . .Read More
Aug 01, 2011, 4:08pm

Poincare find that trhee body don not have mathematical representation. The mix of two galaxies must be a big caso .Or not? . . .Read More
Jul 29, 2011, 11:14pm
Tuesday, March 8, 2011

 

It may look like a static yellow ball from here, but in reality the Sun is alive with activity. Right now it is becoming more active each day as we get closer to the next solar maximum, which is expected to peak in July 2013. However, a couple of years ago it was quieter than it had been for nearly a century. It had very few sunspots and radiated very little energy. This variation is normal — the Sun goes through regular cycles where its activity and number of sunspots go up and then down again. What was unusual was the depth of this solar minimum.

Dibyendu Nandy, from the Indian Institute of Science Education and Research in West Bengal, and colleagues Andres Munoz-Jaramillo and Petrus Martens, from Montana State University, think they might have found the reason for this almost unprecedented solar calm.

An image of the Sun taken in September 2008 — not a single sunspot in sight. Credit: SOHO/ESA/NASA

Each solar cycle lasts roughly 11 years. After this time, its magnetic field flips over. After two cycles the magnetic field has flipped twice and it ends up back where it started. During these cycles the amount of solar activity goes up and down too.

Sunspots are a good measure of the amount of activity going on in the Sun at any point, and the number of sunspots on the Sun follow the 11 year solar cycles; there are more sunspots at a solar maximum and less at a minimum. A sunspot’s magnetic field is very strong and stops the transfer of heat from the interior of the Sun to the surface. Sunspots look dark because this loss of heat makes them cooler than their surroundings. In fact the surrounding area is brighter than it would be without the sunspot. This means that, counterintuitively, the more sunspots there are on the Sun, the more energy radiates out of it — even though it looks darker than usual.

Spotless days in red, number of sunspots in blue. Only cycle 14 had a deeper minimum than the last one (cycle 23). Credit: Nandy et al, Nature, 3rd March 2011

The last solar minimum was unusual because there were a very high number of days — about 800 — without any sunspots at all. Nandy and colleagues created a computer model to try to work out why this happened.

They found that great loops of electrical current, which flow in the plasma that makes up the Sun, were interfering with the formation of new sunspots. In a plasma, the electrons have been stripped away from their atoms, leaving them free to move about and conduct such currents. The currents flow around the surface of the Sun, going down into the interior at the poles and resurfacing at the equator. Dying sunspots get dragged underneath the surface, where their magnetic field is given a boost. They are then sent back up to the top to form a new sunspot.

Close up picture of a sunspot taken in ultraviolet light by NASA's TRACE spacecraft. Credit: NASA

During a deep solar minimum, however, it doesn’t quite happen like this. In the first half of the solar cycle the plasma flows quickly, but in the second half it slows down. This fast movement at the start stops strong magnetic fields forming inside the Sun, so that it eventually runs out of steam and stops making sunspots during that cycle. The slow plasma flow afterwards means that the formation of the next lot of sunspots takes a bit longer to get going that usual.

This all adds up to long stretches of time without a single spot on the surface of the Sun.

The team’s simulation, which modelled this physics, reproduced what we saw during the last solar minimum, showing that very deep solar minima are generally linked to the Sun’s weakened magnetic field.

Being able to predict when solar minima like this are going to occur is a very useful thing. When the Sun’s magnetic field is weakened, so is the solar wind. The solar wind is a stream of charged particles that are ejected from the Sun’s atmosphere and into space, and is responsible for aurorae, geomagnetic storms and the tails of comets, amongst other things. It also stops lots of cosmic rays getting into the solar system. When the Sun’s magnetic field is weakened, the solar wind lets more cosmic rays through, making space a more dangerous place. This new model will hopefully mean we can predict hazardous changes in space weather and plan missions accordingly.

 

Reference
Nandy D, Muñoz-Jaramillo A, & Martens PC (2011). The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations. Nature, 471 (7336), 80-2 PMID: 21368827

Links

3D Sun iPhone app for photos and videos of the latest solar activity — very cool (hat tip to @Psycasm for telling me about this)

Sunspot plotter — find the number of sunspots on any day back to Jan 1st 1755

NASA animations of plasma flows and the sunspots they create

This post has been viewed: 665 time(s)

Tags:       

Blog Comments

JaySeeDub
Dub C Med School
Rate Post:

Like 0 Dislike

Since the solar minimum means more cosmic rays around the solar system, and cosmic rays can do funky things to integrated electronics, can I claim cosmic rays as the reason for soft calculation errors? Maybe get an extension on some project in the future when the next solar minimum occurs?


Psycasm
Rate Post:

Like 0 Dislike

hahaha... watch it, blaming sunspots for anything earthly is the domain of quacks ;)


Psycasm
Rate Post:

Like 0 Dislike

Also, how great is that app? I love it. I've tried a few times to construct a pin-hole projector for solar viewing, but never managed to get it right. Are there other ways to safely view the sun and sunspots?


Suzy
Rate Post:

Like 0 Dislike

Great article Kelly!


Kelly Oakes
Rate Post:

Like 0 Dislike

Psycasm said:

Also, how great is that app? I love it. I've tried a few times to construct a pin-hole projector for solar viewing, but never managed to get it right. Are there other ways to safely view the sun and sunspots?

 

It's amazing! I find myself checking it in lectures when i get a bit bored (at least it's a relevant distraction...).

 

I don't know of any other ways (bar getting a telescope and some good filters).

 

Add Comment?
Comments are closed 2 weeks after initial post.
Friends