banner
You are not using a standards compliant browser. Because of this you may notice minor glitches in the rendering of this page. Please upgrade to a compliant browser for optimal viewing:
Firefox
Internet Explorer 7
Safari (Mac and PC)
Post Archive
2018 (0)
2012 (8)
December (2)

MRS Fall Meeting Day 4
Tuesday, December 4, 2012

MRS Fall Meeting Day 3
Monday, December 3, 2012
November (3)

MRS Fall Meeting Day 2
Wednesday, November 28, 2012

MRS Fall Meeting Day 1
Tuesday, November 27, 2012

Materials Research Society Fall Meeting
Tuesday, November 27, 2012
July (1)

What's in an error bar anyways?
Thursday, July 26, 2012
January (2)
2011 (7)
Blogger Profile

Nick Fahrenkopf
Albany, New York

In 1955 while addressing the National Academy of Sciences Richard Feynman stated "Scientific knowledge is a body of statements of varying degrees of certainty." As usual, Feynman's statement was spot on, and holds true decades later. In his famous "Plenty of Room at the Bottom" lecture Feynman talked about what we now call nanotechnology, and all the different applications. Here I am, half a century later, working "at the bottom" and living in a world of uncertainty. I hope to share some of the exciting discoveries at the nanoscale and explain how they apply to my passion of biotechnology- as well as the everyday world. Learn more about Nicholas Fahrenkopf

My posts are presented as opinion and commentary and do not represent the views of LabSpaces Productions, LLC, my employer, or my educational institution.

Blog RSS Feed
RSS Add to My Yahoo Add to Google
Recent Comments
Comment by Nick Fahrenkopf in What's in an error bar anyways?

lkasdjfsaid: The difference is not in the fields of study, but rather in the two different types of work . . .Read More
Nov 27, 2012, 9:34am
Comment by Nick Fahrenkopf in What's in an error bar anyways?

Brian Krueger, PhDsaid: Since you're working on semiconductor sequencing, what do you think of Oxford Na. . .Read More
Nov 27, 2012, 9:28am

Good one . . .Read More
Oct 15, 2012, 12:42am
Comment by lkasdjf in What's in an error bar anyways?

The difference is not in the fields of study, but rather in the two different types of work being done.  In the example, the EE is making an new device,  -- i.e. developing a new type of technolo. . .Read More
Sep 07, 2012, 11:38am
Awesome Stuff
Thanks to Flickr users kevindooley and DESQie for their art I integrated into the blog's header image.
Views: 4283 | Comments: 0
Before I get started with my summary of Day 2, I need to vent a bit. As a presenter 99% of the time you are not loud enough to not use a microphone, so please don’t try to forgo it. Also, 99% of the time you will cover 1 slide per minute. So, a 15 minute presentation should not have 40 slides. You will never cover all of that material. Please rethink what point you want to get across. I’m constantly disappointed by folks who have the fly through their results due to poor planning. I’m also disappointed when chairs don’t stick to the schedule. There are multiple sessions all over the place so when I show up at 10:15 to see talk X and you just started talk X-1 because you’re running 15 minutes late, that means I can’t see X and still make it to the 10:30 talk in a different session. The times are more than a suggestion!

. . . More
Views: 3752 | Comments: 0
Today was a travel day, but I was still able to attend a number of biomedical engineering talks which are personally interesting to me, and some talks on memristors, which some of my lab mates work on. I’ve explained elsewhere what a memristor is, but briefly it is a metal-insulator-metal material stack that has two resistance states (high and low). If that sounded like goobldy-gook to you, imagine a chunk of wood sandwiched in between two chunks of copper metal. Normally electricity won’t flow between the two chunks of copper through the wood (high resistance). In a memristor you can apply a high voltage to create a conductive path through the “wood” creating a low resistance state. This is useful for computers because it can be used as a memory device: high versus low translates to a 1 or a 0. If you make lots of these you have the memory chip that could be used in your computer or cell phone. These are better than what we have now because they take no power to maintain the data, and can be fabricated much smaller so you can store even more songs and apps on your phone.

. . . More
Views: 2567 | Comments: 4
Last by Nick Fahrenkopf on Aug 02, 2011, 3:00pm
I’m a molecular biologist trapped in the body of someone with a physics degree. I’m a member of a bacteriology lab trapped in a college of “Nanoscale Science and Engineering”. As such, while I try to do cool nanoscale things with biological materials, I’m surrounded by physicists and electrical engineers along with their research projects and problems.

Don’t get me wrong, it is often very interesting and downright “cool stuff”. For now I’ll skip hot electrons and ballistic transport, or density functional theory calculations and focus on some buzz words you might have heard:

  • Carbon nanotubes (CNTs)
  • Graphene
  • Buckyballs
In a word, they’re called fullerenes. These materials are made of one thing: carbon. Just carbon, and nothing but carbon. Why are different formulations of carbon so exciting and worth spending millions if not billions of dollars on? As with just about anything in nanotechnology, matter behaves differently at the nanoscale. Graphite (in pencils) is pretty boring. Diamonds, while pretty (and apparently friendly to women) are pretty inert and solid. The carbon allotropes have little to do with their nanoscale cousins, although that’s not to say we can’t turn on into the other.



. . . More
Friends