banner
You are not using a standards compliant browser. Because of this you may notice minor glitches in the rendering of this page. Please upgrade to a compliant browser for optimal viewing:
Firefox
Internet Explorer 7
Safari (Mac and PC)
Post Archive
2018 (0)2011 (6)2010 (14)
Blogger Profile

Kelly Oakes GBR

I'm an Undergraduate Physics student from Imperial College London, about to start the Masters year of my degree. I mostly write about physics research papers that I find interesting in the hope that other people will find them interesting too. The wordpress version of my blog is here.

My posts are presented as opinion and commentary and do not represent the views of LabSpaces Productions, LLC, my employer, or my educational institution.

Blog RSS Feed
RSS Add to My Yahoo Add to Google
Recent Comments

Before arriving in London, each student receives a short description of the room with the possibility to share a room with a number of other independent students. Twin rooms in flat shares are idea. . .Read More
May 25, 2013, 10:42am

The one thing you forgot to mention, the most important thing as far as I'm concerned, is the possibility that dark matter does not exist at all. It could be nothing but a by-product of our means o. . .Read More
Aug 11, 2012, 11:38am
Comment by kinetic energy in Physics is hard!

agreed, the amount of hours people put into their theories is crazy, but all worth it in the end. . . .Read More
Jun 04, 2012, 12:09pm

From Poincare and caos, for modest changes in the initial conditions, the motion of the system becomes chaotic and completely unpredictable. This is impotrtant for viewing two galaxies mix. Three b. . .Read More
Aug 01, 2011, 4:08pm

Poincare find that trhee body don not have mathematical representation. The mix of two galaxies must be a big caso .Or not? . . .Read More
Jul 29, 2011, 11:14pm
Views: 289 | Comments: 2
Last by Kelly Oakes on Feb 15, 2011, 5:10pm
Galaxy clusters are some of the largest structures in the universe. Astronomers have found these clusters, which are large groups of galaxies bound together by gravity, as far back as only 4 billion years after the Big Bang (less than a third of the age of the universe). They know they contain stars that formed even earlier than that. But nobody had caught a cluster while it was still forming — until now.

Astronomers have found a “protocluster” that was around only 1 billion years after the Big Bang (that’s a redshift of 5.3 for anyone that’s counting). It sits in a region that is 40 million light years across and is rich in young stars.

The protocluster was found in data from the Cosmological Evolution Survey, COSMOS. COSMOS uses the Hubble, Spitzer and Chandra space telescopes with the ground based Keck Observatory and Japan’s Subaru Telescope to get an good look at the universe. COSMOS looks at a tiny region of sp . . . More
Views: 576 | Comments: 1
Last by Evie on Jan 22, 2011, 12:38pm
Last week astronomers working on the European Space Agency’s Planck experiment convened in Paris to talk about their first results, and they weren’t short of things to say. No less than 25 papers were announced on Tuesday 11th January — and this is before work has even started on the mission’s main aim of putting together a detailed picture of the Cosmic Microwave Background, or CMB.

The CMB is a uniform glow of microwave radiation, with only tiny fluctuations, that gives us a snapshot of the universe around 380,000 years after the Big Bang. We’ve seen it before, courtesy of WMAP in 2003 and COBE in 1992. But Planck has the power to look at this faint glow in never-before-seen detail, revealing more about the universe than every before.





Video showing locations of the different compact objects found by Planck.

Before they can get to work on this new view of the CMB, however, astronomers must study the foreground noise of the picture in detail. This “noise” is made up of structures formed after the CMB: galaxies, galaxy clusters, and matter within the Milky Way, such as gas and dust.

Planck astronomers studi . . . More
Friends