banner
You are not using a standards compliant browser. Because of this you may notice minor glitches in the rendering of this page. Please upgrade to a compliant browser for optimal viewing:
Firefox
Internet Explorer 7
Safari (Mac and PC)
Post Archive
2014 (0)2011 (6)2010 (14)
Rate This Post
Total votes: 1
Blogger Profile

Kelly Oakes GBR

I'm an Undergraduate Physics student from Imperial College London, about to start the Masters year of my degree. I mostly write about physics research papers that I find interesting in the hope that other people will find them interesting too. The wordpress version of my blog is here.

My posts are presented as opinion and commentary and do not represent the views of LabSpaces Productions, LLC, my employer, or my educational institution.

Blog RSS Feed
RSS Add to My Yahoo Add to Google
Recent Comments

Before arriving in London, each student receives a short description of the room with the possibility to share a room with a number of other independent students. Twin rooms in flat shares are idea. . .Read More
May 25, 2013, 10:42am

The one thing you forgot to mention, the most important thing as far as I'm concerned, is the possibility that dark matter does not exist at all. It could be nothing but a by-product of our means o. . .Read More
Aug 11, 2012, 11:38am
Comment by kinetic energy in Physics is hard!

agreed, the amount of hours people put into their theories is crazy, but all worth it in the end. . . .Read More
Jun 04, 2012, 12:09pm

From Poincare and caos, for modest changes in the initial conditions, the motion of the system becomes chaotic and completely unpredictable. This is impotrtant for viewing two galaxies mix. Three b. . .Read More
Aug 01, 2011, 4:08pm

Poincare find that trhee body don not have mathematical representation. The mix of two galaxies must be a big caso .Or not? . . .Read More
Jul 29, 2011, 11:14pm
Friday, January 21, 2011

Last week astronomers working on the European Space Agency’s Planck experiment convened in Paris to talk about their first results, and they weren’t short of things to say. No less than 25 papers were announced on Tuesday 11th January — and this is before work has even started on the mission’s main aim of putting together a detailed picture of the Cosmic Microwave Background, or CMB.

The CMB is a uniform glow of microwave radiation, with only tiny fluctuations, that gives us a snapshot of the universe around 380,000 years after the Big Bang. We’ve seen it before, courtesy of WMAP in 2003 and COBE in 1992. But Planck has the power to look at this faint glow in never-before-seen detail, revealing more about the universe than every before.

 

Video showing locations of the different compact objects found by Planck.

Before they can get to work on this new view of the CMB, however, astronomers must study the foreground noise of the picture in detail. This “noise” is made up of structures formed after the CMB: galaxies, galaxy clusters, and matter within the Milky Way, such as gas and dust.

Planck astronomers studied this “noise” in order to better understand how they can remove it from the picture, and just see the CMB. It’s called noise because it gets in the way when we try to look at the CMB, but actually it’s very interesting in its own right. These structures can tell us a lot about the formation of stars, galaxy clusters and even the universe itself — and that’s what some of the 25 new papers announced last week are about.

 

One of the superclusters detected by Planck and confirmed by XMM-Newton. Credit: ESA/Planck Collaboration

First up, we have galaxy clusters. They’re the largest structures in the universe, and the Planck mission has just completed the first all-sky survey of them using something called the Sunyaev-Zel’dovich effect (SZE). Galaxy clusters don’t just contain galaxies; they also hold hot gas and a large amount of dark matter. The SZE arrises when high energy particles in the hot gas interact with the CMB and distort it. Astronomers can see this distortion in the CMB and use it to detect galaxy clusters.

In total, 189 galaxy clusters have been detected by Planck using the SZE. This includes 169 that had already been detected using other methods, and 20 brand new ones. The really interesting thing about these galaxy clusters is the huge range of masses they encompass — between one and fifteen hundred trillion times the mass of the Sun. Galaxy clusters are extremely sensitive to the underlying framework that describes our universe, and so can shed light on the evolution and structure of the universe.

By working together with another experiment at the ESA, the XMM Newton X-ray observatory, 11 of the newly discovered galaxy clusters have already been confirmed. XMM-Newton has been able to get a closer look at some and reveal that two of the new clusters are in fact superclusters. That is, they are clusters of galaxy clusters, rather than simply clusters of galaxies.

 

Map showing cold, dense clumps of dust in the Milky Way. Credit: ESA/Planck Collaboration

Not content with studying the largest structures in the universe, Planck has also taken a look at the coldest.

Thanks to Planck, we can now detect material at lower temperatures than ever before. And we can do it more accurately than ever before, too. Astronomers working on the Planck mission have just finished looking at the results of the first all-sky survey of compact cold dust clumps in the Milky Way, and cool dust in other galaxies. These clumps are some of the coldest objects in the universe, and are key to understanding some of the hottest — cold, dusty clumps, like the ones seen by Planck, are believed to be sites of star formation.

These clumps have temperatures of only 7 to 16 degrees above absolute zero. Most of the clumps Planck found were only a few light years away from Earth, but some were up to eight thousand light years away*.

Though Planck was only able to look in detail at this dust in our own galaxy, the results are vital to understanding the behaviour of similar dust in other galaxies. When we look at galaxies that are further away, we also see them as they were further back in time. As we learn more about star formation in our own galaxy from these cold clumps, we will begin to have a better understanding of star formation in galaxies that are further away — and further back in time.

However, Planck has limitations, and these mean that it cannot look into the heart of these cold objects. This is where the ESA’s Herschel space observatory comes in. It has a much higher resolution than Planck and has no problem seeing the detailed structure of the clumps. Between them, Herschel and Planck can form a complete picture of the clumps at both small and large scales. With their help, we can effectively reel in far away galaxies for a closer look and learn about star formation throughout the history of the universe.

Cold dust clumps and galaxy clusters are just two of the interesting discoveries Planck has made in the two full sky surveys it’s completed since it launched in May 2009. It will continue to survey the sky until at least the end of 2011, but full results, including that new detailed picture of the CMB minus the noise, will not be published before early 2013. That might seem like a long way away, but these first results should keep astronomers busy for a little while yet. Then they can get on with the job of studying the CMB, which will no doubt keep them busy for an even longer time to come.

*A light year is roughly three thousand billion miles. For comparison, the Sun is just less than a hundred billion miles, or eight light minutes, from Earth

More on Planck
Watch the press conference
More about Planck’s findings at the BBC
The 25 papers published by the Planck team

This post has been viewed: 497 time(s)

Tags:         

Blog Comments

Evie
Rate Post:

Like 0 Dislike

This stuff is so cool! I caught the tail end of the press conference, very exciting.

Add Comment?
Comments are closed 2 weeks after initial post.
Friends