banner
You are not using a standards compliant browser. Because of this you may notice minor glitches in the rendering of this page. Please upgrade to a compliant browser for optimal viewing:
Firefox
Internet Explorer 7
Safari (Mac and PC)
Press Release
Cheating slime mold gets the upper hand
Wednesday, January 9, 2013


A ‘cheater’ mutation (chtB) in Dictyostelium discoideum, a free living slime mould able to co-operate as social organism when food is scarce, allows the cheater strain to exploit its social partner, finds a new study published today in BioMed Central’s open access journal BMC Evolutionary Biology. Credit: Lorenzo A Santorelli, Adam Kuspa, Gad Shaulsky, David C Queller and Joan E Strassmann

A ‘cheater’ mutation (chtB) in Dictyostelium discoideum, a free living slime mould able to co-operate as social organism when food is scarce, allows the cheater strain to exploit its social partner, finds a new study published today in BioMed Central’s open access journal BMC Evolutionary Biology. Credit: Lorenzo A Santorelli, Adam Kuspa, Gad Shaulsky, David C Queller and Joan E Strassmann

A ‘cheater’ mutation (chtB) in Dictyostelium discoideum, a free living slime mould able to co-operate as social organism when food is scarce, allows the cheater strain to exploit its social partner, finds a new study published in BioMed Central’s open access journal BMC Evolutionary Biology. Credit: Lorenzo A Santorelli, Adam Kuspa, Gad Shaulsky, David C Queller and Joan E Strassmann

A 'cheater' mutation (chtB) in Dictyostelium discoideum, a free living slime mould able to co-operate as social organism when food is scarce, allows the cheater strain to exploit its social partner, finds a new study published in BioMed Central's open access journal BMC Evolutionary Biology. The mutation ensures that when mixed with 'normal' Dictyosteliummore than the fair share of cheaters become spores, dispersing to a new environment, and avoiding dying as stalk cells.

Dictyosteliumhave an unusual life style. They generally live as individual amoeboid cells, eating bacteria in leaf litter and soil. However when they run out of food they form a multi-cellular 'slug' capable of travelling to a new environment. However if conditions are right they behave more like a fungus, producing a stalk and a fruiting body which releases spores. During this co-operative behaviour approximately 20% become stalk cells which are doomed to starvation but, after dispersal, the spores germinate into new amoeba.

The chtB strain is able to reduce the ability of normal Dictyostelium to form spores so that when mixed in equal numbers with wild type Dictyostelium60% of the spores will be chtB. The chtB mutation appeared to be normal in all other respects and the mutation had no 'fitness cost' which might impede its behaviour or lifespan. In fact the mutation allowed chtB to divide faster in liquid medium.

Dr Lorenzo Santorelli from the University of Oxford who led this study, conducted at Baylor College of Medicine in the Shaulsky lab explained, "chtB cells inhibit the pre-spore gene cotB in their wild type partner. This appears to force the wild type Dictyosteliumto become cells at the base of the stalk rather than stalk cells or spores. Cheaters are essentially parasites, but we could not find the expected fitness cost which usually prevents such cheaters from taking over."

###

BioMed Central: http://www.biomedcentral.com



Thanks to BioMed Central for this article.

This press release was posted to serve as a topic for discussion. Please comment below. We try our best to only post press releases that are associated with peer reviewed scientific literature. Critical discussions of the research are appreciated. If you need help finding a link to the original article, please contact us on twitter or via e-mail.



This press release has been viewed 582 time(s).

Comments
No comments recorded.
Add Comment?
Comments are closed 2 weeks after initial post.
Friends